We propose to develop the next-generation of MR exams by jointly designing new acquisitions, physics-informed AI reconstruction and image analysis. By employing AI tools at all stages of our new MRI pipeline, we will (1) enable new ways to pilot the scanners, thus producing large number of different parametric images tuned to pathophysiological characteristics (2) allow under-sampling strategies that dramatically shorten the acquisition times (<5min full exam) (3) take into account scanners variability and, (4) provide analysis tools, jointly optimized with the acquisition strategy, that integrate all the information and provide guidance for patient diagnostic and prognostic. We will thus simplify the current clinical imaging workflow by creating fast, robust, one click exams that provide all necessary information within one acquisition.
To start, we propose to tune our new MRI exam for the management of acute stroke patients that will not only be faster that actual exams but also provides access to new information that can be used to detect lesions and predict patient evolution. Because enhancing the acute stroke imaging workflow is inherently difficult, primarily due to time sensitivity which could delay treatment, we will minimize potential adverse effects on patient’s care, by conducting our studies first in silico followed by preclinical MRI using rodent models of stroke and then process to clinical settings with healthy volunteers. Our project will create a unique dataset, which will include the acquisition of the same optimized MRF sequences for stroke lesions in both healthy and pathological animals, as well as in healthy human subjects. Such a dataset will allow a more fundamental and exploratory investigation of the transferability of observations made from animal data to human data using AI-based causality models.
Training activities: As part of the MIAI chair, we will develop theoretical and practical training modules designed to teach AI-based tools for medical imaging. We are considering two components: one for initial education (all medical students in the first years of their training as well as medical residents specializing in medical imaging) and another aimed at professionals (AI for medical image as a culture and AI for medical imaging as a job).
ACTIVITÉS
Un doctorant devrait commencer à travailler à l'automne 2025. D'autres postes, y compris des postes de doctorants et de post-doctorants, seront ouverts au recrutement.
LISTE SÉLECTIVE DE PUBLICATIONS
T. Coudert, A. Delphin, A. Barrier, L. Legris, J. M. Warnking, L. Lamalle, M. Doneva, B. Lemasson, E. L. Barbier et T. Christen, Relaxometry and contrast-free cerebral microvascular quantification using balanced Steady-State Free Precession MR Fingerprinting, Magnetic Resonance in Medicine (2024)
A. Barrier, T. Coudert, A. Delphin, B. Lemasson et T. Christen, MARVEL : MR Fingerprinting with Additional micRoVascular Estimates using bidirectional LSTMs, Proceeding of MICCAI 2024 (2024).
A. Delphin, F. Boux, C. Brossard, J. M. Warnking, B. Lemasson, E. L. Barbier et T. Christen. Géométries microvasculaires réalistes pour l'empreinte vasculaire par RM. Imaging Neurosciences (2024).
S. Cackowski, E.L. Barbier, M. Dojat, T. Christen. ImUnity : a generalizable VAE-GAN solution for multicenter MR image harmonization. Medical Image Analysis, 2023.
B. Lemasson, N. Pannetier, N. Coquery, L. S. Boisserand, N. Collomb, N. Schuff, M. Moseley, G. Zaharchuk, E. L. Barbier et T. Christen ; MR Vascular Fingerprinting in Stroke and Brain Tumors Models ; Sci Rep ; 2016
PRÉSENTATION DE LA PRÉSIDENCE
Licence :
Sauf indication contraire, tous les documents sont diffusés sous la licence Creative Commons BY-NC-ND 4.0.
Vous pouvez les consulter et les partager à des fins non commerciales, sans les modifier et en mentionnant les auteurs.
Publié le 1er septembre 2025 Mis à jour le 1er septembre 2025
Membres principaux
Thomas Christen (physicien MR ; GIN, Grenoble), possède une expertise sur les problèmes d'acquisition et de reconstruction de l'IRM.
Benjamin Lemasson (biologiste et analyste de données ; GIN, Grenoble), possède une expertise dans les modèles animaux et dans l'analyse d'images basée sur l'IA.
Florence Forbes (apprentissage statistique et automatique, LJK/Inria), possède une expertise dans les problèmes inverses dans le contexte de l'IRM.
Maxime Peyrard (analyse de données ; LIG, Grenoble), possède une expertise en matière d'apprentissage automatique causal.
Olivier Detante (MD-PhD, CHU-GA), est neurologue à l'unité neurovasculaire, spécialisé dans les nouvelles thérapies pour les patients victimes d'accidents vasculaires cérébraux.
Membres associés
Marie-Anne LE DAIN (Grenoble-INP-UGA formation pro)
Partager le lienCopierCopiéFermer la fenêtre modalePartager l'URL de cette pageJe recommande :Consultable à cette adresse :La page sera alors accessible depuis votre menu "Mes favoris".Arrêter la vidéoLire la vidéoCouper le sonLire l'audioChat : Une question ?Chatbot Robo FabricaStatistiques de trafic MatomoX (anciennement Twitter)