
Online Simulation-Based Inference for Large-Scale Scientific Models

“Exploring how diffusion and transformer-based models can infer the laws behind complex scientific simulations”

Supervision:
• Bruno Raffin, DataMove, Inria (bruno.raffin@inria.fr)

• Pedro L. C. Rodrigues, Statify, Inria (pedro.rodrigues@inria.fr)

Context Researchers are turning to machine learning to tackle various problems in science, from biology to astro-
physics and fluid dynamics. The project that we propose is part of this growing AI4Science movement, focusing on
a key challenge in experiments: figuring out which model parameters best match the data we observe (Figure 1).
More specifically, we use simulation-based inference (SBI) [1], a Bayesian approach that leverages deep generative
models, such as conditional normalizing flows and score-diffusion models, to approximate the posterior distribution –
assigning higher probability to parameter values most likely to have produced an observed data.

(a) Simulation-based inference loop (b) Neural posterior estimation pipeline

Figure 1: Given a stochastic simulator taking parameters θ as input and returning simulations x ∼ p(x|θ), the posterior distribution
p(θ|x0) helps us determine the parameters which are the most likely to have generated observation x0. (b) SBI consist of four main steps:
(i) draw parameters from the prior distribution θi ∼ p(θ), and (ii) run the simulator to generate data xi ∼ p(x|θi). (iii) Train over dataset
(θi, xi) a conditional generative model qϕ that takes x as input and predicts a distribution over parameters θ. (iv) Use qϕ(θ|x0) as an
approximation to the posterior p(θ|x0). Figure taken from [1].

Despite recent successes of the SBI framework across various applied domains, its applicability is currently constrained
to relatively small-scale models. The primary goal of this project is to extend the capabilities of SBI to
accommodate simulators that rely on solving large systems of differential equations to generate observa-
tions. As such, the candidate will have the opportunity to work in the exciting intersection between modern machine
learning methods (e.g. sampling with diffusion models, embeddings with transformers, training with flow matching)
and high performance computing (e.g. handling large-scale parallel simulators, multi-node and GPU training on large
supercomputers).

Methods When considering large scale simulations, the amount of data produced can be overwhelming and the
execution time too long, calling to resort to supercomputers and High Performance Computing (HPC). To optimize
performance and reduce costs (power, storage, compute time), training can be performed online. Multiple simulations
are executed concurrently and continuously to produce data that are used asap, without being stored in files, by
a training process that also runs concurrently with these simulations (Fig. 2) [2, 3]. The traditional SBI workflow
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consisting of (simulate → store, then store → train) has to be re-visited to properly support and leverage this online
training workflow (simulate → buffer → train).

Figure 2: Schematic view of an online training scheme

To be more specific, consider the usual SBI approach of training a conditional neural density estimator qϕ that
approximates the target posterior through the minimization of

L(ϕ) = − 1

N

N∑
i=1

log qϕ(θi|xi) and (θi, xi) ∼ p(θ, x) = p(θ)p(x|θ) . (1)

The batch of N pairs of parameters (θi) and simulations (xi) is provided upfront and the loss function is minimized
via some variant of stochastic gradient descent. Note that this is well motivated because when N → ∞, one can show
that the minimizer of Equation 1 is indeed the target posterior p(θ|x). However, it is not clear how the minimization
behaves when the training samples are obtained sequentially due to simulation constraints and/or sampled from a
different distribution than p(θ, x) as one would do when trying to reduce the number of calls to the simulator.

During the M2 internship, the candidate will explore the following questions:

• What is the direct impact of an online paradigm for simulations on the usual batched SBI training? What are
the precise bottlenecks and challenges to this transition?

• Are there other loss functions more appropriate to minimize instead of Equation 1 when working under the
paradigm of large-scale simulators?

• Can approaches from online reinforcement learning to make smart queries to the simulator and minimize total
cost of compute can be reused and adapted?

N.B.: During the research internship, if the candidate proposes other pertinent questions related to the project, he or
she will be free to tackle them under the supervisors’ guidance. Moreover, the internship is part of a NumPEx funding
with the goal of transitioning to a Ph.D. thesis starting in October 2026.

Environment The candidate will be supervised by Bruno Raffin (Inria Grenoble) and Pedro L. C. Rodrigues (Inria
Grenoble). He or she will work mainly at the DataMove team, located at the IMAG building in UGA campus, and
in close collaboration with the Statify team, located in Inria Montbonnot. He or she will have access to a team of
experts in high-performance computing and machine learning that will help him or her to kickstart the project under
the best conditions. The candidate will also have access to supercomputers to run experiments. The position comes
with salary in line with current university positions and subsidized meals. For more information, please contact the
supervisors.

Requirements
• Strong mathematical background, specially advanced concepts in machine learning and statistics.

• Good working knowledge on Python and its scientific computing ecosystem (scipy, numpy, pytorch, etc).
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• Some practical experience with running experiments on parallel machines will be a plus.

• Excellent writing and oral skills in French and English.
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